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D E N S I T Y  A N D  T O T A L  P R E S S U R E  B E H A V I O R  IN T H E  P R O C E S S  

OF F O R C E D  A N D  S P O N T A N E O U S  R E C O N N E C T I O N  

G. I. Dudnikova,  V.  P. Zhukov, and G. Fuchs 1 UDC 533.951 

The specific features of the density and total pressure (the sum of magnetic and gas-kinetic 
pressures) behavior in the process of forced (by the ezample of propagation of a magnetic acoustic 
wave in the vicinity of the X-point) and spontaneous (by the ezample of development of a helical 
Thirring mode) reconnection are considered. It is shown that the total pressure distribution 
depends weakly on the initial value of the gas-kinetic pressure, the strength of the z-component 
of the magnetic field, and the thermal conductivity in a wide range of parameters. The character 
of density distribution is determined only by the thermal conductivity. It is also shown that the 
behavior of the total pressure and density in the case of spontaneous reconnection weakly depends 
on the thermal conductivity, in contrast to the forced case. 

1. We consider a two-dimensional (O/Oz = 0) problem of propagation of a magnetic acoustic wave in 
the vicinity of the X-point. The initial equations of one-fluid magnetic hydrodynamics have the following form 
in commonly accepted dimensionless variables [1, 2]: 

OA OHz 
Ot + ( V  ~7)A = yam,  O--T" + ( V  ~7)gz = -Hzd ivY + (HV)Vz  + vAHz, 

+ ( Y  = - A A V A ,  V)Vz] (HV)Hz,  

Op Op 
0-t + div ( ,V)  = 0, 0--t + (VVp) = --~pdiv V + (-y - 1)vj 2 + xAT, 

(H, ,Hy)  = ~ O-~A- O~x ) V = ( V, , Vy ). T H =  
P 

The initial conditions corresponded to the steady solution of these equations A = A0 = (x 2 - y2)/2 (X-point): 
H~ = H0, p =/3, p = 1, and V = 0, where H0 and/3 are certain prescribed quantities. 

The motion was initiated by perturbation of the z-component of the vector-potential of the magnetic 
field A at the boundary of the computational domain - 1  < x < 1, -1  < y < 1, which corresponds to a 

converging cylindrical wave: A(x, y, t) = A0(x, y) + f ( t  + In r). Here r = ~ / ~  + y2 (x and y belong to the 

boundary). The function f(~) has the form - E I ( ~  - In V~)2/~ for ~ > In v~  and f(~) = 0 for ~ < In v/2. 
The density p and plasma pressure p at the boundary were assumed equal to their undisturbed values if the 
plasma enters the computational domain. Otherwise, the derivatives normal to the boundary were supposed 
equal to zero. 

The magnetic viscosity u and the thermal conductivity X were assumed constant. 
The numerical solution of the posed problem was obtained using an explicit first-order scheme with 

account of the sign of velocity [1, 2]. 
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Fig. 1 

The problem under study was considered in detail by Brushlinskii et al. [1] for small fl and H0 = 0. It 
was shown there that the distribution of the z-component of electric current (function AA) at a quasistationary 
stage is determined by the perturbation amplitude E1 and inverse conductivity of the plasma u and is almost 
independent of the thermal conductivity X. According to the results of the present work, not only A, but also 
the total pressure P = p+ H 2 / 2 - f l -  H2/2 at large times (t > 10), practically depends only on E1 and u in a 
wide range of parameters 0 </~ < 1, 0 < H0 < 4, and 0 < X < 2u. For example, for E1 = 0.06 and u = 0.01, 
a typical distribution of P in the above-mentioned range is shown in Fig. la. In this case, the current layer 
is aligned along the X axis. The distribution of p significantly depends on the values of X, fl, and H0. The 
distribution of p coincides with that shown in Fig. la for H0 = 0 and in Fig. lb  for H0 = 4. 

Apparently, the reason for this behavior of P is that the poloidal velocity field arises due to reconnection 
of oppositely directed poloidal magnetic flows and is determined by the configuration of the poloidal magnetic 
field�9 In turn, the poloidal magnetic field is determined only by the poloidal velocity field, the perturbation of 
the field at the boundary El,  and the conductivity u. The role of other quantities is insignificant. Therefore, 
V(p + H2/2) weakly depends on the parameters/3, H0, and X. Hence, P also depends only weakly on these 
parameters. 

Brushlinskii et al. [1] state that, for low fl and H0 = 0, the density at the center of the current layer 
reaches a minimum at X << u and a maximum at X > u. It follows from our calculations that  this property 
is observed in a wider range of the parameters fl and H0. In particular, as H0 increases, the change in p 
significantly decreases (the transition to the limit of incompressible fluid [3]). However, the fact that the 
density has a minimum or a maximum in the current layer is determined only by the value of the thermal 
conductivity. 

The above-described property of the density can be easily explained for the case of Hz = 0 (H0 = 0) 
and small ft. In this case, P = p - f l  ,~ p. As mentioned above, the distribution of P ~ p weakly depends on the 
thermal conductivity. Since the effect of thermal conductivity on temperature  is quite significant, the plasma 
density p = p/T also depends significantly on X. For H0 # 0, the discussed property of density distribution is 
not obvious. 

2. As an example of spontaneous reconnection, we consider the development of a helical Thirring 
mode. The problem was solved in a cylindrical coordinate system in the region 0 <~ r < 1, 0 <~ ~ ~< 2~r. The 
presence of helical symmetry was assumed: O/Oz = -R-IO/O~. In this case, it is convenient to introduce the 
components fg and fs for the vector f ,  which are related to its cylindrical components fz and f~ as follows: 
fg = f~ + ( r /R) f ,  and fs = f~ - (r /R)h.  The equations have the form 

fOVg V)Vg) (HV)Hg; pk--  + ( v  = 

r /  = - O r  + or 
(2.1) 

�9 OAg~ 

- -  +Jg - -57 ) ;  

[SVs VsVr r z ~ 1 Op 1 OHm~2 1 OAg~ 
- 7 - -  - + Jg -5-j  ); (2.2) 

559 



Y 

Fig. 2 

Op 
0---t- + div (pV)  = 0; OAg u ( A A g  2 ~-~2-~) ; ot + ( V V ) A g  = 

cgHz 
0--t-" + div (VHz)  = (HV)V, + uAHz; 

Hs = i)Ag Hr l OAg 
Or ' r 0r ' 

cgHg 10Hg Hz 
J~ - Or ' j r -  r 0r jg = - A A g  + 2 R . 

(2.3) 

(2.4) 

Here Ag is the g-component of the vector-potential of the magnetic field. 
Since in most tokamaks the thermal conductivity along the magnetic field is large and across the field 

it is very small, we used the temperature equation 

3 l O T  "~ H 
~p~--~ + ( V V ) T j  = -pd iv  V + uj 2 + div (Xlie(eV)T), e = 

+ + 

where X[[ is the thermal conductivity along the magnetic field and e is the unit vector directed along the 
magnetic field. 

The initial conditions are 

p =  l, Hz 1, Vz O, Hr O, Hs R (  1 - ( 1 - r 2 ) q + l  ) = = = = - 1 ( 2 . 5 )  qr 2 

Conditions (2.5) determine the neutral layer: Hs > 0 near the coordinate axis and Hs < 0 at high 
values of r. The position of the neutral surface (Hs = 0) depends on the value of q. The initial value of plasma 
pressure is chosen to ensure plasma equilibrium in the magnetic field. The equilibrium was violated by a small 
perturbation of velocity whose form is not important. 

This problem is intimately connected with saw-tooth oscillations in the tokamak [3, 4]. In this case, 
the parameter R is equal to the ratio of the major radius of the tokamak to the minor radius. Figures 2-4 
refer to the variant R --- 4, q = 3, and u = 5 - 10 -5. An implicit scheme in the direction along ~ was used 
for the numerical solution of this problem. The grid nodes along r were located in semi-integer points, which 
allowed us to avoid difficulties imposed by the use of the cylindrical coordinate system. 

Figure 2 shows the force curves of the poloidal magnetic field, which coincide with isolines Ag [see 
(2.4)]. The evolution of perturbations in this configuration is accompanied by the appearance of an "island," 
reconnected force curves of the poloidal magnetic field (Fig. 2). The motion is concentrated inside some circle 
of radius r . ,  which roughly coincides with the circle with a zero value of the total poloidal magnetic flux at 

r , ,  

the initial t i m e : / H s ( r ,  t = O)r dr = 0 [see (2.5)]. For r > r. ,  the plasma remains almost undisturbed. 
0 
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The calculations revealed an interesting specific feature of the behavior of the distribution of P = 
p + H2g/2: except for a narrow vicinity of the current layer, the following equality is satisfied with a high 

accuracy: 

( H V ) P  ,~ O. (2.6) 

This equality can be obtained by multiplying Eqs. (2.1) and (2.2) by Hr and Hs, respectively, and summarizing 
them. The poloidai velocity of plasma and, moreover, its acceleration are small (except for a narrow vicinity of 
the current layer); hence, taking into account that H V A g  = 0 and assuming 1 + r2/R 2 ~ 1, we obtain (2.6). 
Note that the value of r2/R 2 is small even for r = 1 since R is large. In addition, the plasma is undisturbed 
for r > r,;  therefore, all functions in this region depend only on r and Eq. (2.6) is satisfied automatically. 
Thus, the neglect of the terms discussed is quite justified. 

It follows from (2.6) that  P is a function of Ag. The calculations show that the distribution of P is 
similar to the distribution of Ag even in the smallest detail, though we cannot say that  P depends only on 
Ag and t. This is explained as follows. As mentioned above, all quantities at the periphery, where the plasma 
is undisturbed, depend only on r. In the remaining part of the domain, the value of dV/dt is small, except 
for a narrow region of the current layer. Hence, we can approximately write that ~TP = jgVAg. Except for 
the vicinity of the current layer, the current jg = - A A g  + 2Hz/R has a constant sign and changes rather 
smoothly mainly in the central part of the domain, i.e., for r < r , ,  the value of AAg is approximately twice as 
low as 2Hz/R ,~ 2/R. Hence, we can write with a certain accuracy that J9 '~ 2/R and, hence, V P  ,~ 2VAg/R.  
At times when the island is big enough, the poloidal magnetic field (the gradients of Ag) in the center of the 
domain decrease. If the internal and external magnetic fluxes were equal, the poloidal magnetic field would 
completely disappear as a result of the reconnection. Therefore, the condition jg ,~ 2 /R is fulfilled with a high 
accuracy in the center of the domain at this stage of the process. Correspondingly, P - 2Ag/R = const except 
for a narrow vicinity of the current layer. 

The thermal conductivity has a significant effect on the temperature and pressure and levels them 
out along the magnetic field. The behavior of the poloidal velocity and the forces, which determine this 
velocity, i.e., the functions Ag and P,  is almost independent of XI[, as in the case of forced reconnection. This 
independence is obvious in the model of a large toroidal magnetic field (Kadomtsev's model) [3, 4], in which 
the specific form of the equation for pressure (temperature) is not important, since it is determined from 
the condition of incompressibility of the plasma. However, the property discussed is not connected with the 
presence of a large toroidal field. For example, in the above problem of propagation of a magnetic acoustic 
wave in the vicinity of the X-point, the process of reconnection does not depend on the thermal conductivity 
even if there is no toroidal field altogether. 

The change in density in the process of forced reconnection is small for the most important values 
R > 3 and amounts to less than 5%. Figure 3 shows the density isolines p. The dependence p(x) for y = 0 
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at the time corresponding to the magnetic configuration shown in Fig. 2 is plotted in Fig. 4. The plasma 
density reaches a minimum in the current layer. In contrast to the case of forced reconnection, the thermal 
conductivity does not lead to a distribution of p with a maximum in the center of the current layer. This is 
related to significant differences in geometry, initial pressure distribution, etc., in these two problems. 

Thus, it is shown in the present paper that the total pressure behavior in the process of forced and 
spontaneous reconnection is mainly determined by the characteristics of the poloidal magnetic field and weakly 
depends on the remaining parameters of the problem. The density distribution can be significantly dependent 
on these parameters. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01572) and the German Research Society (DFG). 
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