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DENSITY AND TOTAL PRESSURE BEHAVIOR IN THE PROCESS
OF FORCED AND SPONTANEOUS RECONNECTION

G. L. Dudnikova, V. P. Zhukov, and G. Fuchs! UDC 533.951

The specific features of the density and total pressure (the sum of magnetic and gas-kinetic
pressures) behavior in the process of forced (by the ezample of propagation of a magnetic acoustic
wave in the vicinity of the X-point) and spontaneous (by the example of development of a helical
Thirring mode) reconnection are considered. It is shown that the total pressure distribution
depends weakly on the initial value of the gas-kinetic pressure, the strength of the z-component
of the magnetic field, and the thermal conductivity in a wide range of parameters. The character
of density distribution is determined only by the thermal conductivity. It is also shown that the
behavior of the total pressure and density in the case of spontaneous reconnection weakly depends
on the thermal conductivity, in contrast to the forced case.

1. We consider a two-dimensional (8/0z = 0) problem of propagation of a magnetic acoustic wave in
the vicinity of the X-point. The initial equations of one-fluid magnetic hydrodynamics have the following form
in commonly accepted dimensionless variables [1, 2]:

oA + (V V)A = vAA, 9H,

+(VV)H, = —H,divV + (HV)V, + vAH,,

ot ot
V z
P(%t— +(VVV) = —V(p+ H2/2) - AAVA, p(aavt +(VV)V) = (HV)A,,
%§+div (pV) =0, %ﬂvvp) = —ypdivV + (7 — 1)uj? + AT,
_2 g _ (24 o4 _
T—p, H—(Hx,Hy)—(ay, ax)’ V= (V,, V).

The initial conditions corresponded to the steady solution of these equations A = Ag = (2 —y?)/2 (X-point):
H,=Hy, p=8, p=1,and V =0, where Hy and f are certain prescribed quantities.

The motion was initiated by perturbation of the 2-component of the vector-potential of the magnetic
field A at the boundary of the computational domain —1 < z < 1, —1 < y < 1, which corresponds to a
converging cylindrical wave: A(z,y,t) = Ao(z,y) + f(t +Inr). Here r = {/z2 + y2 (z and y belong to the
boundary). The function f(£) has the form —E(£ — Inv/2)%/¢ for £ > Inv/2 and f(€) = 0 for ¢ < In V2.
The density p and plasma pressure p at the boundary were assumed equal to their undisturbed values if the
plasma enters the computational domain. Otherwise, the derivatives normal to the boundary were supposed
equal to zero.

The magnetic viscosity v and the thermal conductivity x were assumed constant.

The numerical solution of the posed problem was obtained using an explicit first-order scheme with
account of the sign of velocity [1, 2].
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Fig. 1

The problem under study was considered in detail by Brushlinskii et al. {1] for small 8 and Hy = 0. It
was shown there that the distribution of the z-component of electric current (function AA) at a quasistationary
stage is determined by the perturbation amplitude E; and inverse conductivity of the plasma v and is almost
independent of the thermal conductivity x. According to the results of the present work, not only A, but also
the total pressure P = p+ H2 /2~ 3~ HZ /2 at large times (t > 10), practically depends only on E; and v in a
wide range of parameters 0 < < 1,0 < Hg < 4, and 0 < x < 2v. For example, for F; = 0.06 and v = 0.01,
a typical distribution of P in the above-mentioned range is shown in Fig. 1a. In this case, the current layer
is aligned along the X axis. The distribution of p significantly depends on the values of x, 3, and Hy. The
distribution of p coincides with that shown in Fig. 1a for Hy = 0 and in Fig. 1b for Hy = 4.

Apparently, the reason for this behavior of P is that the poloidal velocity field arises due to reconnection
of oppositely directed poloidal magnetic flows and is determined by the configuration of the poloidal magnetic
field. In turn, the poloidal magnetic field is determined only by the poloidal velocity field, the perturbation of
the field at the boundary E1, and the conductivity v. The role of other quantities is insignificant. Therefore,
V(p+ H2/2) weakly depends on the parameters 3, Hy, and x. Hence, P also depends only weakly on these
parameters.

Brushlinskii et al. [1] state that, for low 8 and Hp = 0, the density at the center of the current layer
reaches a minimum at x < v and a maximum at x > v. It follows from our calculations that this property
is observed in a wider range of the parameters § and Hy. In particular, as Hy increases, the change in p
significantly decreases (the transition to the limit of incompressible fluid [3]). However, the fact that the
density has a minimum or a maximum in the current layer is determined only by the value of the thermal
conductivity.

The above—descrlbed property of the density can be easily explained for the case of H, = 0 (Hp = 0)
and small 3. In this case, P = p—f = p. As mentioned above, the distribution of P = p weakly depends on the
thermal conductivity. Since the effect of thermal conductivity on temperature is quite significant, the plasma
density p = p/T also depends significantly on x. For Hy # 0, the discussed property of density distribution is
not obvious.

2. As an example of spontaneous reconnection, we consider the development of a helical Thirring
mode. The problem was solved in a cylindrical coordinate system in the region 0 < r <1, 0 < ¢ < 27. The

presence of helical symmetry was assumed: 8/8z = —R~19/8y. In this case, it is convenient to introduce the
cornponents fq¢ and f, for the vector f, which are related to its cylindrical components f, and f, as follows:

fo=1f.+(r/R)f, and fs = f, — (r/R)f.. The equations have the form

oV,
o(SE+ (VW) = (HV)H,;
oV, V2 Op ri\-1/ OHZ/2 9A
ey _ _ 1 _ 94, 9> .
p(@t G r) 3r+<+R2) ( or +g(9r (2.1)
8H?/2
p(av 4% V’VZ) (1+ )1ap (—1 HEY laA) (2.2)
ot R R?/rdp r Oy Ir Oy
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o -
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Here Ay is the g-component of the vector-potential of the magnetic field.

Since in most tokamaks the thermal conductivity along the magnetic field is large and across the field
it is very small, we used the temperature equation

3 (BT H
VH? + HZ + HY

where x| is the thermal conductivity along the magnetic field and e is the unit vector directed along the
magnetic field.

The initial conditions are

+ (VV)T) = —pdivV +vj® +div(xje(eV)T), e=

p=1, H,=1, V,=0, H,=0, H3=%<
Conditions (2.5) determine the neutral layer: H; > 0 near the coordinate axis and Hs < 0 at high
values of . The position of the neutral surface (H; = 0) depends on the value of q. The initial value of plasma
pressure is chosen to ensure plasma equilibrium in the magnetic field. The equilibrium was violated by a small
perturbation of velocity whose form is not important.
This problem is intimately connected with saw-tooth oscillations in the tokamak [3, 4]. In this case,
the parameter R is equal to the ratio of the major radius of the tokamak to the minor radius. Figures 2-4
refer to the variant R = 4, ¢ = 3, and » = 5-107°. An implicit scheme in the direction along ¢ was used
for the numerical solution of this problem. The grid nodes along r were located in semi-integer points, which
allowed us to avoid difficulties imposed by the use of the cylindrical coordinate system.
Figure 2 shows the force curves of the poloidal magnetic field, which coincide with isolines Ay [see
(2.4)]. The evolution of perturbations in this configuration is accompanied by the appearance of an “island,”
reconnected force curves of the poloidal magnetic field (Fig. 2). The motion is concentrated inside some circle
of radius 7, Whlch roughly coincides with the circle with a zero value of the total poloidal magnetic flux at

Sl Gl LA 1) (2.5)

qr?

the initial time: / Hy(r,t = 0)r dr = 0 [see (2.5)]. For r > r,, the plasma remains almost undisturbed.
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The calculations revealed an interesting specific feature of the behavior of the distribution of P =
P+ ng /2: except for a narrow vicinity of the current layer, the following equality is satisfied with a high
accuracy:

(HV)P = 0. (2.6)

This equality can be obtained by multiplying Egs. (2.1) and (2.2) by H;, and H,, respectively, and summarizing
them. The poloidal velocity of plasma and, moreover, its acceleration are small (except for a narrow vicinity of
the current layer); hence, taking into account that HV A, = 0 and assuming 1 + r?/R% ~ 1, we obtain (2.6).
Note that the value of 72/ R? is small even for r = 1 since R is large. In addition, the plasma is undisturbed
for r > r.; therefore, all functions in this region depend only on r and Eq. (2.6) is satisfied automatically.
Thus, the neglect of the terms discussed is quite justified.

It follows from (2.6) that P is a function of A,. The calculations show that the distribution of P is
similar to the distribution of A4 even in the smallest detail, though we cannot say that P depends only on
A, and ¢. This is explained as follows. As mentioned above, all quantities at the periphery, where the plasma
is undisturbed, depend only on r. In the remaining part of the domain, the value of dV//dt is small, except
for a narrow region of the current layer. Hence, we can approximately write that VP = j,VA,. Except for
the vicinity of the current layer, the current j;, = —AA; + 2H;/R has a constant sign and changes rather
smoothly mainly in the central part of the domain, i.e., for 7 < r,, the value of AAy is approximately twice as
low as 2H,/ R ~ 2/ R. Hence, we can write with a certain accuracy that j; = 2/R and, hence, VP ~ 2V A,/R.
At times when the island is big enough, the poloidal magnetic field (the gradients of Ay) in the center of the
domain decrease. If the internal and external magnetic fluxes were equal, the poloidal magnetic field would
completely disappear as a result of the reconnection. Therefore, the condition j, =~ 2/R is fulfilled with a high
accuracy in the center of the domain at this stage of the process. Correspondingly, P —2A,/R = const except
for a narrow vicinity of the current layer.

The thermal conductivity has a significant effect on the temperature and pressure and levels them
out along the magnetic field. The behavior of the poloidal velocity and the forces, which determine this
velocity, i.e., the functions A, and P, is almost independent of x|, as in the case of forced reconnection. This
independence is obvious in the model of a large toroidal magnetic field (Kadomtsev’s model) [3, 4], in which
the specific form of the equation for pressure (temperature) is not important, since it is determined from
the condition of incompressibility of the plasma. However, the property discussed is not connected with the
presence of a large toroidal field. For example, in the above problem of propagation of a magnetic acoustic
wave in the vicinity of the X-point, the process of reconnection does not depend on the thermal conductivity
even if there is no toroidal field altogether.

The change in density in the process of forced reconnection is small for the most important values
R > 3 and amounts to less than 5%. Figure 3 shows the density isolines p. The dependence p(z) for y = 0
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at the time corresponding to the magnetic configuration shown in Fig. 2 is plotted in Fig. 4. The plasma
density reaches a minimum in the current layer. In contrast to the case of forced reconnection, the thermal
conductivity does not lead to a distribution of p with a maximum in the center of the current layer. This is
related to significant differences in geometry, initial pressure distribution, etc., in these two problems.

Thus, it is shown in the present paper that the total pressure behavior in the process of forced and
spontaneous reconnection is mainly determined by the characteristics of the poloidal magnetic field and weakly
depends on the remaining parameters of the problem. The density distribution can be significantly dependent
on these parameters.
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